AntiMalDroid: An Efficient SVM-Based Malware Detection Framework for Android

نویسندگان

  • Min Zhao
  • Fangbin Ge
  • Tao Zhang
  • Zhijian Yuan
چکیده

Mobile handsets, especially smartphones, are becoming more open and general-purpose, thus they also become attack targets of malware. Threat of malicious software has become an important factor in the safety of smartphones. Android is the most popular open-source smartphone operating system and its permission declaration access control mechanisms can’t detect the behavior of malware. In this work, AntiMalDroid, a software behavior signature based malware detection framework using SVM algorithm is proposed, AntiMalDroid can detect malicious software and there variants effectively in runtime and extend malware characteristics database dynamically. Experimental results show that the approach has high detection rate and low rate of false positive and false negative, the power and performance impact on the original system can also be ignored.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARTDroid: A Virtual-Method Hooking Framework on Android ART Runtime

Various static and dynamic analysis techniques are developed to detect and analyze Android malware. Some advanced Android malware can use Java reflection and JNI mechanisms to conceal their malicious behaviors for static analysis. Furthermore, for dynamic analysis, emulator detection and integrity selfchecking are used by Android malware to bypass all recent Android sandboxes. In this paper, we...

متن کامل

Permission based Malware Analysis & Detection in Android

Android being a leading and the most popular operating system for smart phones and tablets, has also become a prime target for the attackers due to its growing users and it being an open source platform. This document describes the work done in detecting malware in the Android platform by performing static analysis on the permission based framework in Android platform. In our work, we have extr...

متن کامل

Intelligent Hybrid Approach for Android Malware Detection based on Permissions and API Calls

Android malware is rapidly becoming a potential threat to users. The number of Android malware is growing exponentially; they become significantly sophisticated and cause potential financial and information losses for users. Hence, there is a need for effective and efficient techniques to detect the Android malware applications. This paper proposes an intelligent hybrid approach for Android mal...

متن کامل

Obfuscation-Resilient, Efficient, and Accurate Detection and Family Identification of Android Malware

The number of Android malware apps are increasing very quickly. Simply detecting and removing malware apps is insufficient, since they can damage or alter other files, data, or settings; install additional applications; etc. To determine such behavior, a security engineer can significantly benefit from identifying the specific family to which an Android malware belongs. Techniques for detecting...

متن کامل

Linear SVM-Based Android Malware Detection for Reliable IoT Services

Current many Internet ofThings (IoT) services are monitored and controlled through smartphone applications. By combining IoT with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such services including invasion of privacy and information leakage. Inmost cases, mobile devices have become clutteredwith important personal user...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011